Welcome to College Geometry 2018

Your summer assignment includes practice problems that review area, translations, and reflections. It is expected that you complete these assignments and are ready for a test after the first week of school.

Geometry Binder Requirement:

It is required that you get a large binder (at least 2 inches thick) with three sections with dividers. Fill up your binder with lined paper.

Section 1 - Notes/Homework/Handouts

Section 2 - Vocabulary list

Section 3 - Tests, Projects, and Quizzes
In addition, you will need a zippered pouch with three holes that will hold your materials in your binder. Please include the following tools:

1. At least 6 pencils
2. Box of colored pencils.
3. TI-83 or higher graphing calculator.
4. Protractor
5. Compass
6. Ruler (cm and inches, could be small)

Your summer assignment:

- Do all problems in this packet
- Make sure that you use pencil for the entire assignment. INK WILL NOT BE ACCEPTED.
- Your summer assignment will count as five homework assignments and will be collected the first day of class.
- During the first few weeks of school, you will have a test on the summer assignment material. One week of class days is not enough time to re-teach the information in the packet.
- You are also responsible for knowing the definition of the 36 words attached
- In Exercises 1-6, each quadrilateral is a rectangle. A represents area and P represents perimeter. Use the appropriate unit in each answer. Show your work

1. $A=$?
2. $A=$?
3. $A=96 \mathrm{yd}^{2}$ $b=\underline{?}$

4. $A=273 \mathrm{~cm}^{2}$
$h=?$

5. $P=40 \mathrm{ft}$ $A=$?

6. Shaded area $=$?

In Exercises 7-9, each quadrilateral is a parallelogram. Show your work
7. $A=?$

8. $A=2508 \mathrm{~cm}^{2}$
$P=$?

9. Find the area of the shaded region.

APPLICATIUN Sarah is tiling a wall in her

bathroom. It is rectangular and measures 4 feet by 7 feet. The tiles are square and measure 6 inches on each side. How many tiles does Sarah need? (h) Be careful with units
. What is the area of the parallelogram?

Sketch and label two different parallelograms, each with area $64 \mathrm{~cm}^{2}$.

Find the area of the triangles and trapezoids. Show your work:

$$
\begin{aligned}
& A=50 \mathrm{~cm}^{2} \\
& h=?
\end{aligned}
$$

1. $A=$?

2. $A=?$

3. $A=$?
4. $A=39 \mathrm{~cm}^{2}$ $h=$?

Sketch and label two different triangles, each with area $54 \mathrm{~cm}^{2}$.

Sketch and label two different trapezoids, each with area $56 \mathrm{~cm}^{2}$.

APPLICATION The roof on Crystal's house is formed by two congruent trapezoids and two congruent isosceles triangles, as shown. She wants to put new wood shingles on her roof. Each shingle will cover 0.25 square foot of area. (The shingles are 1 foot by 1
 foot, but they overlap by 0.75 square foot.) How many shingles should Crystal buy?

APPLICATION Tammy is estimating how much she should charge for painting 148 rooms in a new motel with one coat of base paint and one coat of finishing paint. The four walls and the ceiling of each room must be painted. Each room measures 14 ft by 16 ft by 10 ft high.
a. Calculate the total area of all the surfaces to be painted with each coat. Ignore doors and windows.
b. One gallon of base paint covers 500 square feet.

One gallon of finishing paint covers 250 square feet. How many gallons of each will Tammy need for the job?

4PPLICAIIUN Dareen's family is ready to have wall-to-wall carpeting installed. The carpeting they chose costs $\$ 14$ per square yard, the padding $\$ 3$ per square yard, and the installation $\$ 3$ per square yard. What will it cost them to carpet the three bedrooms and the hallway shown? (h)

Satupson's dog. Cecil is tied to a post by a chain 7 theters long. How thuch play area does Cecil have? Express your answer to the nearest square meter.

Use the circle area formula to solve the following problems:

$$
\text { If } r=3 \text { in. }, A=\underline{?} \quad \text { If } r=0.5 \mathrm{~m}, A^{\approx} \underline{?} . \quad \text { If } r=7 \mathrm{~cm}, A=\underline{?}
$$

What is the area of the shaded region between the circle and the triangle?

Graph the image of the figure using the transformation given.

1) translation: 5 units right and 1 unit up

2) translation: 3 units down

3) translation: 4 units right and 4 units down

4) translation: 1 unit left and 2 units up

5) translation: 5 units right and 2 units up

6) translation: 2 units right and 3 units up

Write a rule to describe each transformation.

7)

9)

11)

The figures with the letters (KZT) are the original and the ones with the primes ($K^{\prime} Z^{\prime} T^{\prime}$) are translated figure

10)

12)

Graph the image of the figure using the transformation given.

3) reflection across $y=-x$

5) reflection across $x=-3$

2) reflection across the x-axis

4) reflection across $y=-1$

6) reflection across $y=x$

Write a rule to describe each transformation.

7)

8)

10)

11)

12)

Go to http://www.mathsisfun.com/geometry/symmetry-reflection.html to fill in the table and answer the questions below

Figure 3 lines reflectional symmetry	Figure with 1 line of reflectional symmetry	Figure with 0 lines of reflectional symmetry

Do the following figures have reflectional symmetry? If so, how many lines? Draw them.

	+uamaunsDam /4+бua ambs ay+ $4+!M$ Squambas OM 1	s+uambas +uan」бuos	9
8)		ұиан6аs au! 7	G
	aupld amps aut uo stupod arom do OM1	ubupidoj	\downarrow
	au! 1 D Uo stu!̣od asom do OMI	dvau! 103	ε
		40!+!u!ta0	2
	aupld 'au! 7 'tu!od	${ }^{\text {"sunat }}$ pau!fapun Kutamoas fo syวО\|я 6u!p!!ng วaıu।	I
	uo!+!u!tao	ampN	\#

Kup|nqDJo^ Kutamoas

		a｜bud ud fo sap！s	$2 I$
		2｜6up ud fo xatua入	II
		əן部	OI
		koy	6
	studd jpnba om＋ofu！ 	sヶวəs！я	8
	stu！odpua $4+0 q$ mouf aכuDts！p ponba S！tout fuambas D uo tuiod \forall	tu！odp！W	L
alduix $3 / 2 \mathrm{an}+\mathrm{T}$ Id	uo！＋！！！ag	ambN	\＃

$a \mathrm{l} \\| \mathrm{av}$	＋Jasuafu！danau＋Du＋aupld amos aut u！sau！omı	sou！｜｜a｜｜budd	61
		uo！！！！！ap рооб о би！！！यм 0f dats aany	81
	6u！tsat aud noर uo！＋！u！fap ayt sanouds！p fout aldmoxa uv	a｜cuoxa－daqunoj	LI
	 	ло＋วas！g ajouv	91
	＋uamauns．am amos a $+4+!$ M sajbud OM	sajbud quanabuo	GI
	sajbud aunspam $0+100+$ Kutamoas	dotoditoud	ゅI
		ayt fo aunsvaw	\＆I
әjduex do mexie！a	uo！＋！u！fa0	ambN	\＃

KupjnqDコO＾人utamoas

	 	no6kiod	G2
		aj6u＊2sn＋90	七乙
	006 UD4＋ssal saunspaui q04t วן6up uv	ว ¢и \forall วtnว \forall	$\varepsilon 乙$
	．06 saunspam＋Dut a！bud uv	aן6ux＋4б！¢	22
		sau！ 7 Mays	12
	－06 to toasuatu！tout sau！OM1	do！no！puaduad $\begin{array}{r}\text { sau！} \\ \hline\end{array}$	02
	uo！＋！u！far	ambN	\＃

Kup｜nqDコO＾Kutamoag

	$\frac{{ }^{\mathrm{I}} x-{ }^{{ }^{2}} \mathcal{K}-{ }^{2} K}{}=\frac{u n, d}{\partial S!\mathcal{A}}=w=\text { ədols }$		
		u06K10 dop dinfay	9
			+
			ε
	प0!	2uld	

KupjnqDoso Kulamoag

