Welcome to College Geometry 2018

Your summer assignment includes practice problems that review area, translations, and reflections. It is expected that you complete these assignments and are ready for a test after the first week of school.

Geometry Binder Requirement:

It is required that you get a **large** binder (at least 2 inches thick) with three sections with dividers. Fill up your binder with lined paper.

Section 1 – Notes/Homework/Handouts

Section 2 – Vocabulary list

Section 3 - Tests, Projects, and Quizzes

In addition, you will need a zippered pouch with three holes that will hold your materials in your binder.

Please include the following tools:

1. At least 6 pencils

- 2. Box of colored pencils.
- 3. TI-83 or higher graphing calculator.
- 4. Protractor
- 5. Compass
- 6. Ruler (cm and inches, could be small)

Your summer assignment:

- Do all problems in this packet
- Make sure that you use pencil for the entire assignment. INK WILL NOT BE ACCEPTED.
- Your summer assignment will count as five homework assignments and will be collected the first day of class.
- During the first few weeks of school, you will have a test on the summer assignment material. One week of class days is not enough time to re-teach the information in the packet.
- You are also responsible for knowing the definition of the 36 words attached

- ► In Exercises 1–6, each quadrilateral is a rectangle. A represents area and P represents perimeter. Use the appropriate unit in each answer. Show your work
 - 1. A = ?

2. A = ?

3. $A = 96 \text{ yd}^2$ b = ?

4.5 cm

= ? 12 yd

- 4. $A = 273 \text{ cm}^2$ $h = \frac{?}{13 \text{ cm}}$
- 5. P = 40 ft $A = \frac{?}{}$

21 m

6. Shaded area = ?

In Exercises 7-9, each quadrilateral is a parallelogram.

Show your work

7. A = ?

8. $A = 2508 \text{ cm}^2$ P = ?

9. Find the area of the shaded region.

APPLICATION Sarah is tiling a wall in her bathroom. It is rectangular and measures 4 feet by 7 feet. The tiles are square and measure δ inches on each side. How many tiles does Sarah need?

Be careful with units

. What is the area of the parallelogram?

Sketch and label two different parallelograms, each with area $64~\mathrm{cm}^2$.

Find the area of the triangles and trapezoids. Show your work:

5.
$$A = 39 \text{ cm}^2$$

 $h = ?$

6.
$$A = 31.5 \text{ ft}^2$$
 $b = ?$

Sketch and label two different triangles, each with area $54~\mathrm{cm}^2$.

. Sketch and label two different trapezoids, each with area $56\ \mathrm{cm}^2$.

APPLICATION The roof on Crystal's house is formed by two congruent trapezoids and two congruent isosceles triangles, as shown. She wants to put new wood shingles on her roof. Each shingle will cover 0.25 square foot of area. (The shingles are 1 foot by 1 foot, but they overlap by 0.75 square foot.) How many shingles should Crystal buy?

APPLICATION Tammy is estimating how much she should charge for painting 148 rooms in a new motel with one coat of base paint and one coat of finishing paint. The four walls and the ceiling of each room must be painted. Each room measures 14 ft by 16 ft by 10 ft high.

- a. Calculate the total area of all the surfaces to be painted with each coat. Ignore doors and windows.
- b. One gallon of base paint covers 500 square feet. One gallon of finishing paint covers 250 square feet. How many gallons of each will Tammy need for the job?

APPLICATION Dareen's family is ready to have wall-to-wall carpeting installed. The carpeting they chose costs \$14 per square yard, the padding \$3 per square yard, and the installation \$3 per square yard. What will it cost them to carpet the three bedrooms and the hallway shown?

APPLICATION A landscape architect is designing three trapezoidal flowerbeds to wrap around three sides of a hexagonal flagstone patio, as shown. What is the area of the entire flowerbed? The landscape architect's fee is \$100 plus \$5 per square foot. What will the flowerbed cost?

Sampson's dog, Cecil, is tied to a post by a chain 7 meters long. How much play area does Cecil have? Express your answer to the nearest square meter.

Use the circle area formula to solve the following problems:

If
$$r = 3$$
 in., $A = \frac{?}{}$.

If
$$r = 0.5 \text{ m}$$
, $A \approx ?$.

If
$$r = 7$$
 cm., $A = \frac{?}{}$.

If
$$A = 3\pi \text{ in.}^2$$
, then $r = ?$.

If
$$A = 0.785 \text{ m}^2$$
, then $r \approx \underline{?}$.

What is the area of the shaded region between the circle and the triangle?

Graph the image of the figure using the transformation given.

1) translation: 5 units right and 1 unit up

2) translation: 1 unit left and 2 units up

3) translation: 3 units down

4) translation: 5 units right and 2 units up

5) translation: 4 units right and 4 units down

6) translation: 2 units right and 3 units up

Write a rule to describe each transformation.

The figures with the letters (KZT) are the original and the ones with the primes (K'Z'T') are translated figure

10)

11)

12)

Graph the image of the figure using the transformation given.

1) reflection across y = -2

2) reflection across the x-axis

3) reflection across y = -x

4) reflection across y = -1

5) reflection across x = -3

6) reflection across y = x

Write a rule to describe each transformation.

7)

8)

9)

10)

11)

12)

Go to http://www.mathsisfun.com/geometry/symmetry-reflection.html to fill in the table and answer the questions below

Figure 3 lines reflectional	Figure with 1 line of reflectional	Figure with 0 lines of reflectional
symmetry	symmetry	symmetry

Do the following figures have reflectional symmetry? If so, how many lines? Draw them.

6 Congruent	5 Line Segment	4 Coplanar	3 Colinear	2 Definition	1 Three Building Blocks of Geometry "undefined ter	# Name	
		ਜ	• ਜ		lding d terms"		
Two segments with the same length/ measurement	Part of a line with two endpoints	Two or more points on the same plane	Two or more points on a line	Statement that clarifies or explains the meaning of a word or phrase	Point, Line, Plane	Definition	
10 10	D.	A D D D D D D D D D D D D D D D D D D D	PQR		(P)	Picture/Example	

12	=	10	9	00	7	#
Sides of an angle	Vertex of an angle	Angle	Ray	Bisects	Midpoint	Name
The rays that make up the angle	The point where the rays of the vertex meet	Two non-colinear rays that share a common endpoint	Part of a line with one endpoint	Something (point, line, segment, ect.) that cuts a figure into two equal parts	A point on a segment that is equal distance from both endpoints	Definition
vertex sides angle	vertex A A	angle ZABC B B A A	Ray \overrightarrow{AB} or ray \overrightarrow{AC}	Point M bisects AB An = 2.0 cm HB = 2.0 cm	Point M is the midpoint B of \overline{AB}	Picture/Example

19	8	17	16	1 1	14	13	#
Parallel lines	Three step to writing a good definition	Counter-example	Angle Bisector	Congruent angles	Protractor	Measure of the angle	Name
Two lines in the same plane that never intersect	 Classify the item in a category Differentiate the item from all others in that category 	An example that disproves the definition you are testing	A ray through the vertex of an angle that splits the angle into two congruent angles	Two angles with the same measurement	Geometry tool to measure angles	Smallest rotation about the vertex from one ray to another	Definition
			$\angle LKI$ is bisected by Ray \overline{KM}	ZA≅ZB		the smallest rotation would be 155°	Diagram or Example

25	24	23	22	21	2	3 #
Polygon	Obtuse Angle	Acute Angle	Right angle	Skew Lines	Perpendicular Lines	Name
A closed figure made up of line segments connected endpoint to endpoint which intersect exactly two others	An angle that measures greater than 90°	An angle that measures less than 90°	An angle that measures 90°	Two lines in different planes that never intersect	Two lines that intersect at 90°	Definition
	C Obtuse Angle A	Angle less than 50°	V 200°	A R B	2COB = 90°	Diagram or Example

	A polygon with at least one diagonal outside the polygon	Concave Polygon	ω
gon convex polygon	A polygon where all the diagonals are inside the polygon	Convex Polygon	30
of diagonals	A segment that connect two nonconsecutive vertices of a polygon	Diagonal	29
	3- triangle 8- octagon 4- quadrilateral 9- nonagon 5-pentagon 10- decagon 6- hexagon 11 undecagon 7-heptagon 12-dodecagon	Names of polygons by the number of sides	28
vertex of the polygon	The point where two sides of the polygon intersect	Vertex of a polygon	27
Sides of the polygon Sides	Line segments that make up the polygon	Sides of a polygon	26
Diagram or Example	Definition	Name	#

 	 	 	 			1
36	 35	34	 ္သ		32	#
Slope Formula	Regular Polygon	Equiangular Polygon	Equilateral polygon	polygons	Congruent	Name
slope = $m - rise = y_2 - y_1$	A polygon that is equiangular and equilateral	A polygon where all the angles are the same measure	A polygon where all the sides are the same length		Two polygons with the same size and shape	Definition
			ΔXYZ ≅ ΔTRS	X D # T	× × × × × × × × × × × × × × × × × × ×	Diagram or Example